Applied Predictive Modeling

Filename: applied-predictive-modeling.pdf
ISBN: 9781461468493
Release Date: 2013-05-17
Number of pages: 600
Author: Max Kuhn
Publisher: Springer Science & Business Media

Download and read online Applied Predictive Modeling in PDF and EPUB This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance—all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code for each step of the process. The data sets and corresponding code are available in the book’s companion AppliedPredictiveModeling R package, which is freely available on the CRAN archive. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. Readers and students interested in implementing the methods should have some basic knowledge of R. And a handful of the more advanced topics require some mathematical knowledge.


Applied Predictive Modeling

Filename: applied-predictive-modeling.pdf
ISBN: 1461468485
Release Date: 2013-05-17
Number of pages: 600
Author: Max Kuhn
Publisher: Springer

Download and read online Applied Predictive Modeling in PDF and EPUB This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance—all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code for each step of the process. The data sets and corresponding code are available in the book’s companion AppliedPredictiveModeling R package, which is freely available on the CRAN archive. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. Readers and students interested in implementing the methods should have some basic knowledge of R. And a handful of the more advanced topics require some mathematical knowledge.


Applied Predictive Analytics

Filename: applied-predictive-analytics.pdf
ISBN: 9781118727690
Release Date: 2014-03-31
Number of pages: 456
Author: Dean Abbott
Publisher: John Wiley & Sons

Download and read online Applied Predictive Analytics in PDF and EPUB Learn the art and science of predictive analytics — techniques that get results Predictive analytics is what translates big data into meaningful, usable business information. Written by a leading expert in the field, this guide examines the science of the underlying algorithms as well as the principles and best practices that govern the art of predictive analytics. It clearly explains the theory behind predictive analytics, teaches the methods, principles, and techniques for conducting predictive analytics projects, and offers tips and tricks that are essential for successful predictive modeling. Hands-on examples and case studies are included. The ability to successfully apply predictive analytics enables businesses to effectively interpret big data; essential for competition today This guide teaches not only the principles of predictive analytics, but also how to apply them to achieve real, pragmatic solutions Explains methods, principles, and techniques for conducting predictive analytics projects from start to finish Illustrates each technique with hands-on examples and includes as series of in-depth case studies that apply predictive analytics to common business scenarios A companion website provides all the data sets used to generate the examples as well as a free trial version of software Applied Predictive Analytics arms data and business analysts and business managers with the tools they need to interpret and capitalize on big data.


92 Applied Predictive Modeling Techniques in R

Filename: 92-applied-predictive-modeling-techniques-in-r.pdf
ISBN: 151751679X
Release Date: 2015-10-21
Number of pages: 614
Author: N. D. Lewis
Publisher: CreateSpace

Download and read online 92 Applied Predictive Modeling Techniques in R in PDF and EPUB About This Book This jam-packed book takes you under the hood with step by step instructions using the popular and free R predictive analytics package. It provides numerous examples, illustrations and exclusive use of real data to help you leverage the power of predictive analytics. A book for every data analyst, student and applied researcher. Here is what it can do for you: BOOST PRODUCTIVITY: Learn how to build predictive analytic models in less time than you ever imagined possible! Even if you're a busy professional or a student with little time. By spending as little as 10 minutes a day working through the dozens of real world examples, illustrations, practitioner tips and notes, you'll be able to make giant leaps forward in your knowledge, strengthen your business performance, broaden your skill-set and improve your understanding. SIMPLIFY ANALYSIS: You will discover over 90 easy to follow applied predictive analytic techniques that can instantly expand your modeling capability. Plus you'll discover simple routines that serve as a check list you repeat next time you need a specific model. Even better, you'll discover practitioner tips, work with real data and receive suggestions that will speed up your progress. So even if you're completely stressed out by data, you'll still find in this book tips, suggestions and helpful advice that will ease your journey through the data science maze. SAVE TIME: Imagine having at your fingertips easy access to the very best of predictive analytics. In this book, you'll learn fast effective ways to build powerful models using R. LEARN FASTER: 92 Applied Predictive Modeling Techniques in R offers a practical results orientated approach that will boost your productivity, expand your knowledge and create new and exciting opportunities for you to get the very best from your data. IMPROVE RESULTS: Want to improve your predictive analytic results, but don't have enough time? Right now there are a dozen ways to instantly improve your predictive models performance. Odds are, these techniques will only take a few minutes apiece to complete. The problem? You might feel like there's not enough time to learn how to do them all. The solution is in your hands. It uses R, which is free, open-source, and extremely powerful software. Here is some of what is included: Support Vector Machines Relevance Vector Machines Neural networks Random forests Random ferns Classical Boosting Model based boosting Decision trees Cluster Analysis For people interested in statistics, machine learning, data analysis, data mining, and future hands-on practitioners seeking a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. Buy the book today. Your next big breakthrough using predictive analytics is only a page away!


Regression Modeling Strategies

Filename: regression-modeling-strategies.pdf
ISBN: 9783319194257
Release Date: 2015-08-14
Number of pages: 582
Author: Frank Harrell
Publisher: Springer

Download and read online Regression Modeling Strategies in PDF and EPUB This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modeling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for fitting nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. The reader will gain a keen understanding of predictive accuracy and the harm of categorizing continuous predictors or outcomes. This text realistically deals with model uncertainty and its effects on inference, to achieve "safe data mining." It also presents many graphical methods for communicating complex regression models to non-statisticians. Regression Modeling Strategies presents full-scale case studies of non-trivial datasets instead of over-simplified illustrations of each method. These case studies use freely available R functions that make the multiple imputation, model building, validation and interpretation tasks described in the book relatively easy to do. Most of the methods in this text apply to all regression models, but special emphasis is given to multiple regression using generalized least squares for longitudinal data, the binary logistic model, models for ordinal responses, parametric survival regression models and the Cox semi parametric survival model. A new emphasis is given to the robust analysis of continuous dependent variables using ordinal regression. As in the first edition, this text is intended for Masters' or Ph.D. level graduate students who have had a general introductory probability and statistics course and who are well versed in ordinary multiple regression and intermediate algebra. The book will also serve as a reference for data analysts and statistical methodologists, as it contains an up-to-date survey and bibliography of modern statistical modeling techniques. Examples used in the text mostly come from biomedical research, but the methods are applicable anywhere predictive models ("analytics") are useful, including economics, epidemiology, sociology, psychology, engineering and marketing.


Predictive Modeling with SAS Enterprise Miner

Filename: predictive-modeling-with-sas-enterprise-miner.pdf
ISBN: 9781607648185
Release Date: 2013-12-19
Number of pages: 500
Author: Kattamuri S. Sarma, PhD
Publisher: SAS Institute

Download and read online Predictive Modeling with SAS Enterprise Miner in PDF and EPUB Learn the theory behind and methods for predictive modeling using SAS Enterprise Miner. Learn how to produce predictive models and prepare presentation-quality graphics in record time with Predictive Modeling with SAS Enterprise Miner: Practical Solutions for Business Applications, Second Edition. If you are a graduate student, researcher, or statistician interested in predictive modeling; a data mining expert who wants to learn SAS Enterprise Miner; or a business analyst looking for an introduction to predictive modeling using SAS Enterprise Miner, you'll be able to develop predictive models quickly and effectively using the theory and examples presented in this book. Author Kattamuri Sarma offers the theory behind, programming steps for, and examples of predictive modeling with SAS Enterprise Miner, along with exercises at the end of each chapter. You'll gain a comprehensive awareness of how to find solutions for your business needs. This second edition features expanded coverage of the SAS Enterprise Miner nodes, now including File Import, Time Series, Variable Clustering, Cluster, Interactive Binning, Principal Components, AutoNeural, DMNeural, Dmine Regression, Gradient Boosting, Ensemble, and Text Mining. Develop predictive models quickly, learn how to test numerous models and compare the results, gain an in-depth understanding of predictive models and multivariate methods, and discover how to do in-depth analysis. Do it all with Predictive Modeling with SAS Enterprise Miner. This book is part of the SAS Press program.


Modeling Techniques in Predictive Analytics

Filename: modeling-techniques-in-predictive-analytics.pdf
ISBN: 9780133412956
Release Date: 2013-08-23
Number of pages: 348
Author: Thomas W. Miller
Publisher: FT Press

Download and read online Modeling Techniques in Predictive Analytics in PDF and EPUB Today, successful firms compete and win based on analytics. Modeling Techniques in Predictive Analytics brings together all the concepts, techniques, and R code you need to excel in any role involving analytics. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. Miller addresses multiple business challenges and business cases, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and even spatio-temporal data. For each problem, Miller explains why the problem matters, what data is relevant, how to explore your data once you’ve identified it, and then how to successfully model that data. You’ll learn how to model data conceptually, with words and figures; and then how to model it with realistic R programs that deliver actionable insights and knowledge. Miller walks you through model construction, explanatory variable subset selection, and validation, demonstrating best practices for improving out-of-sample predictive performance. He employs data visualization and statistical graphics in exploring data, presenting models, and evaluating performance. All example code is presented in R, today’s #1 system for applied statistics, statistical research, and predictive modeling; code is set apart from other text so it’s easy to find for those who want it (and easy to skip for those who don’t).


Applied Predictive Control

Filename: applied-predictive-control.pdf
ISBN: 1852333383
Release Date: 2001-11-28
Number of pages: 264
Author: Sunan Huang
Publisher: Springer Science & Business Media

Download and read online Applied Predictive Control in PDF and EPUB This focused treatment includes the fundamentals and some state-of-the-art developments in the field of predictive control. A substantial part of the book addresses application issues in predictive control, providing several interesting case studies for more application-oriented readers.


An Introduction to Statistical Learning

Filename: an-introduction-to-statistical-learning.pdf
ISBN: 9781461471387
Release Date: 2013-06-24
Number of pages: 426
Author: Gareth James
Publisher: Springer Science & Business Media

Download and read online An Introduction to Statistical Learning in PDF and EPUB An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.


Personalized Predictive Modelling in Type 1 Diabetes

Filename: personalized-predictive-modelling-in-type-1-diabetes.pdf
ISBN: 9780128051467
Release Date: 2017-07-01
Number of pages: 300
Author: Eleni I. Georga
Publisher: Academic Press

Download and read online Personalized Predictive Modelling in Type 1 Diabetes in PDF and EPUB Personalized Predictive Modeling in Diabetes features state-of-the-art methodologies and algorithmic approaches which have been applied to predictive modeling of glucose concentration, ranging from simple autoregressive models of the CGM time series to multivariate nonlinear regression techniques of machine learning. Developments in the field have been analyzed with respect to: (i) feature set (univariate or multivariate), (ii) regression technique (linear or non-linear), (iii) learning mechanism (batch or sequential), (iv) development and testing procedure and (v) scaling properties. In addition, simulation models of meal-derived glucose absorption and insulin dynamics and kinetics are covered, as an integral part of glucose predictive models. This book will help engineers and clinicians to: select a regression technique which can capture both linear and non-linear dynamics in glucose metabolism in diabetes, and which exhibits good generalization performance under stationary and non-stationary conditions; ensure the scalability of the optimization algorithm (learning mechanism) with respect to the size of the dataset, provided that multiple days of patient monitoring are needed to obtain a reliable predictive model; select a features set which efficiently represents both spatial and temporal dependencies between the input variables and the glucose concentration; select simulation models of subcutaneous insulin absorption and meal absorption; identify an appropriate validation procedure, and identify realistic performance measures. Describes fundamentals of modeling techniques as applied to glucose control Covers model selection process and model validation Offers computer code on a companion website to show implementation of models and algorithms Features the latest developments in the field of diabetes predictive modeling


Clinical Prediction Models

Filename: clinical-prediction-models.pdf
ISBN: 0387772448
Release Date: 2008-12-16
Number of pages: 500
Author: Ewout Steyerberg
Publisher: Springer Science & Business Media

Download and read online Clinical Prediction Models in PDF and EPUB Prediction models are important in various fields, including medicine, physics, meteorology, and finance. Prediction models will become more relevant in the medical field with the increase in knowledge on potential predictors of outcome, e.g. from genetics. Also, the number of applications will increase, e.g. with targeted early detection of disease, and individualized approaches to diagnostic testing and treatment. The current era of evidence-based medicine asks for an individualized approach to medical decision-making. Evidence-based medicine has a central place for meta-analysis to summarize results from randomized controlled trials; similarly prediction models may summarize the effects of predictors to provide individu- ized predictions of a diagnostic or prognostic outcome. Why Read This Book? My motivation for working on this book stems primarily from the fact that the development and applications of prediction models are often suboptimal in medical publications. With this book I hope to contribute to better understanding of relevant issues and give practical advice on better modelling strategies than are nowadays widely used. Issues include: (a) Better predictive modelling is sometimes easily possible; e.g. a large data set with high quality data is available, but all continuous predictors are dich- omized, which is known to have several disadvantages.


Practical Predictive Analytics and Decisioning Systems for Medicine

Filename: practical-predictive-analytics-and-decisioning-systems-for-medicine.pdf
ISBN: 9780124116405
Release Date: 2014-09-27
Number of pages: 1110
Author: Linda Miner
Publisher: Academic Press

Download and read online Practical Predictive Analytics and Decisioning Systems for Medicine in PDF and EPUB With the advent of electronic medical records years ago and the increasing capabilities of computers, our healthcare systems are sitting on growing mountains of data. Not only does the data grow from patient volume but the type of data we store is also growing exponentially. Practical Predictive Analytics and Decisioning Systems for Medicine provides research tools to analyze these large amounts of data and addresses some of the most pressing issues and challenges where data integrity is compromised: patient safety, patient communication, and patient information. Through the use of predictive analytic models and applications, this book is an invaluable resource to predict more accurate outcomes to help improve quality care in the healthcare and medical industries in the most cost–efficient manner. Practical Predictive Analytics and Decisioning Systems for Medicine provides the basics of predictive analytics for those new to the area and focuses on general philosophy and activities in the healthcare and medical system. It explains why predictive models are important, and how they can be applied to the predictive analysis process in order to solve real industry problems. Researchers need this valuable resource to improve data analysis skills and make more accurate and cost-effective decisions. Includes models and applications of predictive analytics why they are important and how they can be used in healthcare and medical research Provides real world step-by-step tutorials to help beginners understand how the predictive analytic processes works and to successfully do the computations Demonstrates methods to help sort through data to make better observations and allow you to make better predictions


Mastering Predictive Analytics with R

Filename: mastering-predictive-analytics-with-r.pdf
ISBN: 9781783982813
Release Date: 2015-06-17
Number of pages: 414
Author: Rui Miguel Forte
Publisher: Packt Publishing Ltd

Download and read online Mastering Predictive Analytics with R in PDF and EPUB R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions in the real world. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems. This book is designed to be both a guide and a reference for moving beyond the basics of predictive modeling. The book begins with a dedicated chapter on the language of models and the predictive modeling process. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real world data sets. By the end of this book, you will have explored and tested the most popular modeling techniques in use on real world data sets and mastered a diverse range of techniques in predictive analytics.


Predictive Analytics using R

Filename: predictive-analytics-using-r.pdf
ISBN: 9781312841017
Release Date: 2015-01-16
Number of pages: 552
Author: Jeffrey Strickland
Publisher: Lulu.com

Download and read online Predictive Analytics using R in PDF and EPUB This book is about predictive analytics. Yet, each chapter could easily be handled by an entire volume of its own. So one might think of this a survey of predictive modeling. A predictive model is a statistical model or machine learning model used to predict future behavior based on past behavior. In order to use this book, one should have a basic understanding of mathematical statistics - it is an advanced book. Some theoretical foundations are laid out but not proven, but references are provided for additional coverage. Every chapter culminates in an example using R. R is a free software environment for statistical computing and graphics. You may download R, from a preferred CRAN mirror at http: //www.r-project.org/. The book is organized so that statistical models are presented first (hopefully in a logical order), followed by machine learning models, and then applications: uplift modeling and time series. One could use this a textbook with problem solving in R-but there are no "by-hand" exercises.


Predictive Microbiology in Foods

Filename: predictive-microbiology-in-foods.pdf
ISBN: 9781461455202
Release Date: 2012-12-12
Number of pages: 128
Author: Fernando Perez-Rodriguez
Publisher: Springer Science & Business Media

Download and read online Predictive Microbiology in Foods in PDF and EPUB Predictive microbiology is a recent area within food microbiology, which studies the responses of microorganisms in foods to environmental factors (e.g., temperature, pH) through mathematical functions. These functions enable scientists to predict the behavior of pathogens and spoilage microorganisms under different combinations of factors. The main goal of predictive models in food science is to assure both food safety and food quality. Predictive models in foods have developed significantly in the last 20 years due to the emergence of powerful computational resources and sophisticated statistical packages. This book presents the concepts, models, most significant advances, and future trends in predictive microbiology. It will discuss the history and basic concepts of predictive microbiology. The most frequently used models will be explained, and the most significant software and databases (e.g., Combase, Sym’Previus) will be reviewed. Quantitative Risk Assessment, which uses predictive modeling to account for the transmission of foodborne pathogens across the food chain, will also be covered. ​